讓內(nèi)存干CPU的活兒 新技術(shù)讓芯片運(yùn)行速度提升百倍
近日,美國普林斯頓大學(xué)研究人員推出了一款新型計(jì)算機(jī)芯片,其運(yùn)行速度是傳統(tǒng)芯片的百倍。有媒體稱其采用了“內(nèi)存計(jì)算”技術(shù),使計(jì)算效率得到大幅提升。 這一神奇的技術(shù)到底是什么?它為何能顯著提高芯片性能?科技日?qǐng)?bào)記者就此采訪了相關(guān)專家。 高度集成,把計(jì)算與存儲(chǔ)功能合二為一 對(duì)于我們常用的計(jì)算機(jī)來說,存儲(chǔ)器可分為內(nèi)部存儲(chǔ)器和外部存儲(chǔ)器。內(nèi)部存儲(chǔ)器,即“內(nèi)存”,是電腦的主存儲(chǔ)器。它的存取速度快,但只能儲(chǔ)存臨時(shí)或少量的數(shù)據(jù)和程序。 外部存儲(chǔ)器,通常被稱為“外存”,它包括硬盤、軟盤、光盤、U盤等,通常可永久存儲(chǔ)大量數(shù)據(jù),如操作系統(tǒng)、應(yīng)用程序等。當(dāng)運(yùn)行某一程序時(shí),處理器(CPU)會(huì)先從內(nèi)存中讀取數(shù)據(jù),而后將一部分結(jié)果寫入內(nèi)存,并選擇性地將另一部分結(jié)果寫入外存進(jìn)行永久保存。 也就是說,通常情況下,內(nèi)存只能存儲(chǔ)少量數(shù)據(jù),計(jì)算機(jī)中大部分?jǐn)?shù)據(jù)都“住”在外存。當(dāng)CPU運(yùn)行程序時(shí)就需要調(diào)取數(shù)據(jù),若調(diào)取“住”在內(nèi)存的數(shù)據(jù),則用時(shí)較少;若調(diào)取“住”在外存的數(shù)據(jù),則可能要費(fèi)些周折。 因此科學(xué)家就想,能否把數(shù)據(jù)都存在內(nèi)存里呢?于是,內(nèi)存計(jì)算技術(shù)出現(xiàn)了。 “內(nèi)存計(jì)算技術(shù)是伴隨著大數(shù)據(jù)處理技術(shù)的興起而興盛起來的。在處理大數(shù)據(jù)過程中,由于數(shù)據(jù)量極大,處理數(shù)據(jù)時(shí)頻繁訪問硬盤這些外存會(huì)降低運(yùn)算速度。隨著大容量內(nèi)存技術(shù)的興起,專家開始提出在初始階段就把數(shù)據(jù)全部加載到內(nèi)存中,而后可直接把數(shù)據(jù)從內(nèi)存中調(diào)取出來,再由處理器進(jìn)行計(jì)算。這樣可以省去外存與內(nèi)存之間的數(shù)據(jù)調(diào)入/調(diào)出過程,從而大大提升計(jì)算速度!北本┖娇蘸教齑髮W(xué)計(jì)算機(jī)學(xué)院教授、中德聯(lián)合軟件研究所所長劉軼告訴科技日?qǐng)?bào)記者。 “但普林斯頓大學(xué)研發(fā)團(tuán)隊(duì)采用的‘內(nèi)存計(jì)算’技術(shù)與上述概念中所指的內(nèi)存計(jì)算并不完全相同。”劉軼說,普林斯頓大學(xué)所采用的技術(shù)其實(shí)是PIM(Process in-memory),通常被翻譯為“存內(nèi)計(jì)算”“存算一體”或“計(jì)算存儲(chǔ)一體化”。 “PIM技術(shù)是指直接在內(nèi)存中處理數(shù)據(jù),而不是把數(shù)據(jù)從內(nèi)存讀取到處理器中進(jìn)行處理。”劉軼指出,PIM的技術(shù)概念在1990年就已被提出,雖然相關(guān)研究論文早已發(fā)表出來,但相關(guān)技術(shù)始終難以落地。 劉軼認(rèn)為“難落地”的主要原因在于,PIM技術(shù)尚難以達(dá)到傳統(tǒng)計(jì)算機(jī)馮·諾依曼結(jié)構(gòu)的靈活性和通用性水平!澳壳埃瑢W(xué)界所提出的PIM技術(shù),只能做某些類別的應(yīng)用,難以實(shí)現(xiàn)靈活編程!彼f。 可解決“存儲(chǔ)墻”問題,大幅提升性能 在劉軼看來,PIM技術(shù)的重要價(jià)值在于,其能解決傳統(tǒng)計(jì)算機(jī)結(jié)構(gòu)存在的“存儲(chǔ)墻”問題。傳統(tǒng)計(jì)算機(jī)采用的馮·諾依曼結(jié)構(gòu),需要CPU從內(nèi)存中取出指令并且執(zhí)行,某些指令又需要從內(nèi)存讀取數(shù)據(jù)進(jìn)行處理,再將結(jié)果寫回內(nèi)存。由于處理器所執(zhí)行的程序和待處理的數(shù)據(jù)都被存在內(nèi)存中,這樣處理器在運(yùn)行過程中需要頻繁訪問內(nèi)存。隨著微電子技術(shù)的發(fā)展,處理器性能的進(jìn)步速度逐漸快于內(nèi)存性能。 近30年來,處理器性能每年提升55%,而內(nèi)存訪問速度每年僅提升7%。這使得處理器的處理速度遠(yuǎn)遠(yuǎn)快于內(nèi)存的讀取速度,直接導(dǎo)致了“存儲(chǔ)墻”的出現(xiàn),嚴(yán)重拖慢了程序執(zhí)行速度。 “這好比一個(gè)人消化能力很強(qiáng),飯桌上也有很多食物,但這個(gè)人的嗓子眼兒很細(xì),咽不下去。這就使得強(qiáng)大的消化能力‘無用武之地’,也限制了這個(gè)人吃東西的速度!眲⑤W說。 “近年來深度學(xué)習(xí)等新型算法的興起,對(duì)推倒‘存儲(chǔ)墻’提出了更迫切的需求!眲⑤W指出,新型算法訪問內(nèi)存的模式跟傳統(tǒng)模式不太相同,刷臉、圖片識(shí)別、機(jī)器翻譯等新型算法往往以類似于人腦的方式實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的處理。由于這類算法涉及的神經(jīng)元數(shù)量多、訓(xùn)練樣本量大,這導(dǎo)致在通用計(jì)算機(jī)上進(jìn)行深度學(xué)習(xí)計(jì)算的效率比較低。 |