切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 7648閱讀
    • 13回復(fù)

    [原創(chuàng)]lighttools背光模擬 [復(fù)制鏈接]

    上一主題 下一主題
    離線成龍
     
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2009-05-14
    初上手lighttools做背光貼幾個(gè)圖大家看看大家給點(diǎn)建議: Db4(E*/pj!  
    @}; vl  
    Z9wKjxu+  
    W(5XcP(  
       :1asY:)vNP  
    交流探討QQ:859504158 |7%has3"  
    希望大家都多給點(diǎn)意見(jiàn)
    1條評(píng)分
    doucan 金錢(qián) +5 - 2009-05-14
     
    分享到
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 1樓 發(fā)表于: 2009-05-18
    歡迎廣大背光朋友提出見(jiàn)解!!
    離線cheering
    發(fā)帖
    77
    光幣
    1
    光券
    0
    只看該作者 2樓 發(fā)表于: 2009-05-20
    我不是做背光的,對(duì)背光也不太了解 0fGt7 "Q  
    我想請(qǐng)教一下,做背光和做一般照明的區(qū)別。 E4$y|Ni"  
    5BJn_<  
    謝謝!
    離線myjobpeter
    發(fā)帖
    51
    光幣
    61
    光券
    0
    只看該作者 3樓 發(fā)表于: 2009-07-15
    還不錯(cuò),挺均勻,不過(guò)真夠亮的
    離線yanglm
    發(fā)帖
    25
    光幣
    9
    光券
    0
    只看該作者 4樓 發(fā)表于: 2009-08-13
    我也是做背光的,不知為什么,借用一下樓主的圖說(shuō)明一下問(wèn)題,得到的總是發(fā)光強(qiáng)度的分布,不像樓主是照度的分布,請(qǐng)大家指點(diǎn)。。。
    發(fā)帖
    51
    光幣
    45
    光券
    0
    只看該作者 5樓 發(fā)表于: 2009-08-13
    新手 看不懂哦
    離線barryrao
    發(fā)帖
    79
    光幣
    62
    光券
    0
    只看該作者 6樓 發(fā)表于: 2009-08-13
    學(xué)習(xí)中.........
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 7樓 發(fā)表于: 2009-08-28
    你可以建立空間亮度接受器。
    離線chengipx
    發(fā)帖
    29
    光幣
    8
    光券
    0
    只看該作者 8樓 發(fā)表于: 2009-09-04
    學(xué)習(xí)一下。。
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 9樓 發(fā)表于: 2009-09-15
    How Many Rays Do I Need for Monte Carlo Optimization? ]zj&U#{  
    While it is important to ensure that a sufficient number of rays are traced to :T>OJ"p  
    distinguish the merit function value from the noise floor, it is often not necessary to n<@C'\j@  
    trace as many rays during optimization as you might to obtain a given level of +QOK]NJN  
    accuracy for analysis purposes. What matters during optimization is that the IL uQf-  
    changes the optimizer makes to the model affect the merit function in the same way ~ 588md :  
    that the overall performance is affected. It is possible to define the merit function so -G#m'W&  
    that it has less accuracy and/or coarser mesh resolution than meshes used for <]_[o:nOP  
    analysis and yet produce improvements during optimization, especially in the early snNB;hkj  
    stages of a design. z5D*UOy5M  
    A rule of thumb for the first Monte Carlo run on a system is to have an average of at J l{My^I5  
    least 40 rays per receiver data mesh bin. Thus, for 20 bins, you would need 800 rays -s7!:MB%g  
    on the receiver to achieve uniform distribution. It is likely that you will need to #;+SAoN  
    define more rays than 800 in a simulation in order to get 800 rays on the receiver. ?5^DQ|Hg ^  
    When using simplified meshes as merit functions, you should check the before and ($8!r|g5#  
    after performance of a design to verify that the changes correlate to the changes of )T&r770  
    the merit function during optimization. As a design reaches its final performance J/,m'wH  
    level, you will have to add rays to the simulation to reduce the noise floor so that I47sq