切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 7657閱讀
    • 13回復(fù)

    [原創(chuàng)]lighttools背光模擬 [復(fù)制鏈接]

    上一主題 下一主題
    離線成龍
     
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2009-05-14
    初上手lighttools做背光貼幾個(gè)圖大家看看大家給點(diǎn)建議: CAf6:^0  
    :g/tZd$G5  
    {P-):  
    {{!-Gr  
       c &c@M$  
    交流探討QQ:859504158 :Hbv)tS\3w  
    希望大家都多給點(diǎn)意見
    1條評(píng)分
    doucan 金錢 +5 - 2009-05-14
     
    分享到
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 1樓 發(fā)表于: 2009-05-18
    歡迎廣大背光朋友提出見解。!
    離線cheering
    發(fā)帖
    77
    光幣
    1
    光券
    0
    只看該作者 2樓 發(fā)表于: 2009-05-20
    我不是做背光的,對(duì)背光也不太了解 % AgUUn&k  
    我想請(qǐng)教一下,做背光和做一般照明的區(qū)別。 {4PwLCy  
    r mOj  
    謝謝!
    離線myjobpeter
    發(fā)帖
    51
    光幣
    61
    光券
    0
    只看該作者 3樓 發(fā)表于: 2009-07-15
    還不錯(cuò),挺均勻,不過真夠亮的
    離線yanglm
    發(fā)帖
    25
    光幣
    9
    光券
    0
    只看該作者 4樓 發(fā)表于: 2009-08-13
    我也是做背光的,不知為什么,借用一下樓主的圖說明一下問題,得到的總是發(fā)光強(qiáng)度的分布,不像樓主是照度的分布,請(qǐng)大家指點(diǎn)。。。
    發(fā)帖
    51
    光幣
    45
    光券
    0
    只看該作者 5樓 發(fā)表于: 2009-08-13
    新手 看不懂哦
    離線barryrao
    發(fā)帖
    79
    光幣
    62
    光券
    0
    只看該作者 6樓 發(fā)表于: 2009-08-13
    學(xué)習(xí)中.........
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 7樓 發(fā)表于: 2009-08-28
    你可以建立空間亮度接受器!
    離線chengipx
    發(fā)帖
    29
    光幣
    8
    光券
    0
    只看該作者 8樓 發(fā)表于: 2009-09-04
    學(xué)習(xí)一下。。
    離線成龍
    發(fā)帖
    102
    光幣
    143
    光券
    0
    只看該作者 9樓 發(fā)表于: 2009-09-15
    How Many Rays Do I Need for Monte Carlo Optimization? jq-_4}w?C  
    While it is important to ensure that a sufficient number of rays are traced to 59-c<I/}f  
    distinguish the merit function value from the noise floor, it is often not necessary to L4f3X~8,b  
    trace as many rays during optimization as you might to obtain a given level of R GX=)  
    accuracy for analysis purposes. What matters during optimization is that the cS+>J@L  
    changes the optimizer makes to the model affect the merit function in the same way yppo6HGD  
    that the overall performance is affected. It is possible to define the merit function so k+4#!.HX^  
    that it has less accuracy and/or coarser mesh resolution than meshes used for u2[w#   
    analysis and yet produce improvements during optimization, especially in the early s<o7!!c  
    stages of a design. |)G<,FJQE_  
    A rule of thumb for the first Monte Carlo run on a system is to have an average of at RrgGEx  
    least 40 rays per receiver data mesh bin. Thus, for 20 bins, you would need 800 rays w*MpX U<  
    on the receiver to achieve uniform distribution. It is likely that you will need to G#1GXFDO{  
    define more rays than 800 in a simulation in order to get 800 rays on the receiver. s9d_GhT%-  
    When using simplified meshes as merit functions, you should check the before and KY