切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 2661閱讀
    • 1回復

    [討論]一個優(yōu)化到全局最小值的系統(tǒng) [復制鏈接]

    上一主題 下一主題
    離線linlin911911
     
    發(fā)帖
    912
    光幣
    129057
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2011-11-10
    nnt8 sf@\  
    今天,用CODE V做了一個Introduction to Lens Design With Practical ZEMAX examples chapter12的例子,順便用CODE V全局優(yōu)化運行了一下,運行15分鐘后結束。得到的結論是,這本書采用的特殊優(yōu)化步驟竟然真能繞過較大的極小值,到達了全局最小值。不可思議!當然了,可能更復雜的系統(tǒng)難以優(yōu)化到最小值。 R=-+YBw7/  
    Joseph M. Geary 只是平淡的說了下面一段話,卻沒提這是使用SF2玻璃下達到最全局最小值。SF2對應的成都玻璃是ZF1. 6exI_3A4jh  
    Cautionary Note: In the above example we were able to get a good result by unslaving everything and making all curvatures and airspaces variable. Some- times, however, this will not work. You might have to do things in several separate stages before a good result is obtained. In other words, a direct path to the deep minima may be blocked by a shallower minima. Somehow you have to get around the latter first. Properly staged optimizations can navigate around such an obstacle.
     
    分享到
    離線sansummer
    發(fā)帖
    956
    光幣
    1054
    光券
    1
    只看該作者 1樓 發(fā)表于: 2011-12-04
    樓主你想說什么呢?發(fā)表感慨吧,呵呵 h`=r )D  
    ;0IvF#SJ(.  
    不過我覺得不會那么夸張吧,,用了不可思議這個詞,呵呵